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ABSTRACT: Two types of linear low-density polyethyl-
enes, prepared by metallocene catalysts were studied exper-
imentally in terms of differential scanning calorimetry, dy-
namic mechanical analysis (DMA), and tensile testing. The
different comonomer content and the small amounts of long
branching in one of the materials studied strongly affect the
crystalline distribution and morphology and, consequently,
the DMA and tensile experimental data. From the experi-
mental DMA data, the function of relaxation modulus,

treated as a material property, is used to describe the corre-
sponding tensile experimental results. A constitutive analy-
sis that considers the viscoelastic path at small strains and
the viscoplastic one at high strains proved to be capable of
describing the tensile behavior of the materials. © 2003 Wiley
Periodicals, Inc. J Appl Polym Sci 88: 1942–1950, 2003
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INTRODUCTION

The prediction of the inelastic mechanical behavior of
solid polymers remains an aspect of great importance.
A lot of work dealing with the association of yield and
postyield behaviors of amorphous glassy polymers
with the nonlinear viscoelastic nature of glassy state
has been published in recent years.1–6

Most of these approaches have treated the nonlinear
viscoelasticity in terms of integral representation with
multiple relaxation times, stress dependent or with
state variables related to the free volume.7

In an article by Hasan and Boyce,8 the nonlinear
viscoelastic behavior was modeled as an elastic–in-
elastic transition, where the energetically distributed
nature of inelastic events and their evolution with
straining was considered. The model results were
compared to the experimental data for true strain rate
uniaxial compression tests at different rates and tem-
peratures, whereas the model capability was further
tested with compressive creep test at different stresses
and temperatures.

An analogous approach9 based on the development
of a unified model, describing both monotonic loading
and creep experiments, was recently published.
Through this analysis, the rate of plastic deformation
in glassy polymers, with a distribution of plastic shear
transformations considered, was calculated.

With the assumption of the dominance of a vis-
coelastic path at small strains, the deformation proce-
dure was treated as a thermally activated one and was
described by a constitutive equation of viscoelasticity.
Hereafter, the viscoplastic path prevailed, and a de-
composition of strain into viscoelastic and viscoplastic
parts was applied in terms of a kinematic formulation.

In this study, following analogous ideas, we exam-
ined the viscoelastic nature of the deformation mech-
anism of semicrystalline polymers, up to the yield
point and above it, by dynamic mechanical analysis
(DMA). Two types of linear low-density polyethylenes
(LLDPEs), prepared by metallocene catalysts, were
experimentally studied in terms of dynamic mechan-
ical spectroscopy. From the storage modulus versus
temperature curves at four different frequencies, the
corresponding (apparent) master curves were plotted,
and consequently, the relaxation spectra in a logarith-
mic timescale were evaluated. With these values of
relaxation spectra, the relaxation modulus function
[E(t)] with respect to time was obtained. This function,
hereafter, was treated as a material property, able to
describe experimental results obtained at a totally dif-
ferent timescale, namely, tensile stress–strain data.

EXPERIMENTAL

Materials

Two types of commercial grade LLDPE, prepared by
metallocene catalysts and designated as M1 and M2,
were studied. Table I summarizes the densities, the
melt flow index (MFI) values, and the comonomer
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types and amounts used. The density of pellets was
measured in an isopropanol–distilled water gradient
column calibrated with glass floats. A minimum of
four samples was measured to obtain the values given
in Table I. The error in the measurement was �0.0002
g/c.

The MFI was measured at 190°C at load of 2.16 Kgf.
The materials were compression molded at 120°C

with a thermopress and a special mold of 2 mm in
thickness.

Methods

Calorimetric measurements were carried out with a
Setaram DSC 141 instrument (Caluire, France) with a
pulsed nitrogen cooling system. Both types of materi-
als were treated in the same way: they were heated at
a constant heating rate of 40°C/min from ambient
temperature up to 150°C to erase previous history.
Then, they were held for 2 min at 150°C and subse-
quently cooled to 0°C at a cooling rate of 20°C/min.
After an isothermal hold of 2 min, the samples were
heated at a rate of 10°C/min, and the corresponding
thermogram was recorded. Calculations of the per-
centage crystallinity were based on a heat of fusion of
290 J/g for the perfect crystal10 and are presented in
Table II. The melting temperature, heat of fusion, and
percentage crystallinity were expected to decrease as
the comonomer content inreased.11 When samples M1
and M2 were compared, the effect of comonomer was
expressed by the shifting of the melting temperature
to a lower value for sample M2, whereas its heat of
fusion was slightly higher, probably due to the inho-
mogeneous distribution of crystal size and morphol-
ogy. Sample M2 was characterized by small amounts
of long-chain branching, meaning that it was a sub-
stantially linear polyethylene; however, this branching
did not affect the density of the material.

DMA experiments were performed with a Perkin-
Elmer DMA 7e instrument (Norwalk, CT). The mode

of deformation applied was the three-point bending
system, and the measurements were performed via
tension control, where a static force was applied as a
percentage of the dynamic force. The amplitude was
controlled at a fixed set point throughout the experi-
ment and its magnitude and phase angle were re-
corded. The storage modulus (E�), loss modulus (E�),
and the tan � curves versus temperature were then
evaluated.

The mean dimensions of the sample plaques were 2
� 4 � 15 mm. The temperature range varied from
�170°C up to the melting temperature of the poly-
mers, and the measurements were carried out at four
fixed frequencies: 0.2, 1, 10, and 50 Hz.

Tensile measurements were performed with an In-
stron 1121 type tester (Bucks, England) at room tem-
perature. The specimens were 30 mm in gauge length,
and the applied crosshead speed was 10 mm/min.
Tensile engineering stress–strain curves were then ob-
tained up to the breaking point.

RESULTS AND DISCUSSION

From DMA experiments, the storage modulus (E�),
loss modulus (E�), and tan � values at a fixed fre-
quency versus temperature were evaluated. The � and
� transitions were examined in respect to their peak
values and the peak temperature for E� and tan �.
These results are summarized in Table III for the fre-
quency of 1 Hz. At higher frequencies, these peak
values became slightly higher. Figure 1 demonstrates
the storage modulus curves of the materials tested at a
frequency of 1 Hz. Starting from �170°C, the first
change in the slope, related to the � transition, took
place at �130°C. This transition was attributed to the
motions of CH2 units in the amorphous region.11,12

The temperature region of the � transition appeared
around �40°C, and as it has been reported,13 the �
transition is related to the segmental motions of dis-

TABLE I
Properties of Ethylene Copolymers

Sample type
Density
(g/cm3)

MFI
(190°C, 2.16 Kgf)

Comonomer
type

Comonomer
content (%)

M1 0.927 3.02 C8 7
M2 0.926 1.303 C8 9.5

TABLE II
Crystallinity and Melting Points of Ethylene Copolymers

Sample type
Melting point

(°C)
Heat of fusion

(J/g)
Crystallinity

(%)

M1 125 96.30 33.20
M2 118.06 101.06 34.84
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TABLE III
DMA Results of Ethylene Copolymers

Sample type

Tan �

Tan �
(peak height)

E�

E� (peak height;
108 Pa)

Transition Transition

T� (°C) T� (°C) � � T� (°C) T� (°C) � �

M1 �22 �124 0.07 0.067 �31.17 �139.76 0.82 2.08
M2 �20 �125 0.08 0.075 �31.78 �134 0.97 1.986

T�: peak temperature of �-transition.
T�: peak temperature of �-transition.

Figure 1 Storage modulus versus temperature at 1 Hz for samples M1 and M2.
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ordered chains located in interfacial region associated
with lamellar crystallites.

The storage modulus of the M1 sample was always
higher than that of the M2 sample, exhibiting the
influence of micromorphology on DMA results. This
trend revealed the fact that samples with lower
comonomer content and better quality of crystallinity
exhibited higher values of storage modulus. From the
tan � versus temperature curves presented in Figure 2,
the � and � relaxation regions of the samples can be
studied. The storage modulus versus temperature
data at four different frequencies, namely, 0.2, 1, 10,
and 50 Hz, are presented in Figures 3 and 4 for sam-
ples M1 and M2, respectively. We subsequently rear-
ranged these data by a standard time–temperature
superposition principle to obtain the master curves
shown in Figure 5, with respect to log(�aT), where aT

is the shift factor and � is the frequency. An analogous
procedure for semicrystalline materials was followed

in ref. 14. For the plotting of master curves, room
temperature (20°C) was selected as a reference, due to
the fact that, as is shown later, these data were related
to the stress–strain results, also obtained at room tem-
perature. To evaluate E(t) as function of time, from the
experimental data, the following procedure was fol-
lowed: The experimental data of the storage modulus
were expressed in a logarithmic time timescale
(through the inversion of the initial frequency scale)
and were fitted with a seventh-degree polynomial
function. The derivative of this expression is the relax-
ation time spectrum (H) when the Alfrey approxima-
tion is considered:15

H��� � ��dE�t�
d ln t�

t��

.

where t is the time and � is the relaxation time. The
relaxation spectrum versus time in a logarithmic scale

Figure 2 Tan � versus temperature at 1 Hz for samples M1 and M2.
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was obtained and is shown in Figure 6. Both types of
materials exhibited two main regions of local maxima
in their relaxation spectra but in rather different posi-
tions along the logarithmic timescale and with differ-
ent intensities. The observed differences in the relax-
ation spectra, which are fundamental viscoelastic
functions, reflected the corresponding differences in
the micromorphology of the two types of materials,
which finally affected their tensile behaviors.

Furthermore, by integrating the relaxation spectrum
function, according to the previous equation, we were
able to construct an approximate function of E(t) as a
function of time, applying the method of interpola-
tion, with the software Mathematica.16 Then, the mod-
ulus relaxation function of the materials in respect to
time was plotted versus a conventional timescale (see
Fig. 7). Both curves were of the same shape, whereas
the values of sample M1 were higher. The previously
mentioned procedure consisted of an empirical
method for the evaluation of E(t) as a function of time,

starting from DMA experiments. It is important to
mention here that through this procedure, the values
of E(t) could be evaluated at extremely low times.
Hereafter, this function can be treated as a material
property and correlated with the material’s macro-
scopic behavior.

However, engineering tensile stress–strain curves
were obtained and are presented in Figure 8. Both
curves exhibited the main features of the inelastic
behavior of polymers, namely, the initial viscoelas-
tic part, the stress peak, and the subsequent strain
softening, followed by cold drawing and strain
hardening up to the breaking point. More specifi-
cally, the yielding of semicrystalline polymers is
mainly attributed to the breakage of large crystal-
lites, whereas strain softening is strongly related to
inhomogeneous deformation distribution. Thereaf-
ter, cold drawing took place, due to the relative
slippage of macromolecular chains, whereas at
higher strains, an intense strain hardening occurred

Figure 3 Storage modulus versus temperature for sample M1 at four fixed frequencies: 0.2, 1, 10, and 50 Hz.

Figure 4 Storage modulus versus temperature for sample M2 at four fixed frequencies: 0.2, 1, 10, and 50 Hz.
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by the stretching of tie molecules. It is obvious from
these results that the higher tensile properties of
sample M1 arose from its higher density (lower
comonomer content) but mainly from the better
quality of crystallites it might have had (higher
melting point) compared with sample M2.

Constitutive analysis

When one makes the assumption that the stress–strain
behavior of the glassy state follows a viscoelastic path
at small strains, the relation between stress and strain
can be described by a single integral constitutive equa-
tion as follows:

� � �
0

t

E�t � t��
de
dt� dt� (1)

where � is the stress, t is the upper limit of integration,
t� is the integration variable, E(t) is the relaxation
modulus function and e is the strain. The application
of the Boltzmann superposition principle was consid-
ered to be valid when we considered that at small
strains before yielding, linear viscoelastic response
takes place. After this stage however, plastic deforma-
tion is developed.

To describe the yield and postyield behavior after
the initial viscoelastic path, we assumed that at this
stage, the plastic path prevails. Therefore, there was a
need to consider a suitable kinematic formulation sep-
arating the total deformation into plastic and vis-
coelastic parts. Such an approach, widely used by
many authors,17–20 assumes that the total deformation
gradient tensor (F) separates multiplicatively into an
elastic part (Fe) and a plastic part (Fp), such that

F � FeFp (2)

This approach was applied earlier for the yield and
postyield deformation behavior of polymers by Boyce
et al..21 Among many treatments, we selected an ap-
proach developed by Rubin.22,23 Rubin’s main idea
was to calculate the elastic part of strain developed
during deformation procedure, through an evolution
equation of a vector triad (mi) that is introduced to
model the orientation and elastic deformation of the
average atomic lattice.

Rubin’s work mainly concerned with the physics of
plastic flow of crystalline metals, was proved to de-
scribe successfully plastic deformation of semicrystal-
line and amorphous polymers as well.24,25

In our case, we assumed that mi followed the de-
formation of an elementary material volume respon-

Figure 5 Master curves of storage modulus in respect to
logarithmic frequency for samples M1 and M2 at a reference
temperature of 20°C.

Figure 6 Relaxation time spectra in respect to the logarithmic timescale for samples M1 and M2.
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sible for the viscoelastic behavior of the material. The
evolution equation of mi is then given by the following
equation:

ṁi � Lmmi (3)

where

Lm � L � Lp (4)

where L and Lp are the velocity gradient tensors of
total and plastic deformation, respectively.

In the case of uniaxial loading, only the symmetric
parts D and Dp of these tensors are taken into account,
so that

L � D, Lp � Dp (5)

When we consider a fixed rectangular Cartesian base
vector ei parallel to mi, we have

m1 � 	1e1, m2 � 	2e2, m3 � 	3e3 (6)

where 	1, 	2, and 	3 are the stretch ratios of the vis-
coelastically deformed unit, with initial values equal

Figure 7 Function of E(t) with respect to time for samples M1 and M2.

Figure 8 Experimental engineering tensile stress–strain curves for samples M1 and M2.
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to unity. For uniaxial loading in the e1 direction, one
can take 	2 � 	3 � 	. It is also convenient to define
distortional measures mi� of the elementary volume by
the following formula:

m�i � Jm
��1/3�mi (7)

where Jm is the elementary volume and is equal
to 	1	2	3. The vectors mi� can, therefore, be written
as

m�1 � ame1, m�2 �
1

�am
e2, m�3 �

1

�am
e3 (8)

where am is the stretch ratio per cubic root of Jm.
In the content of these definitions, the velocity gra-

dient tensor of the total deformation is specified by the
form

L � �
ȧ
a

0 0

0
ḃ
b

0

0 0
ċ
c

� (9)

where a, b, and c represent the stretches of material
line elements in the coordinate directions ei with ini-
tial conditions a(0) � b(0) � c(0) � 1.

The symmetric part of the plastic velocity gradient
Dp was written by Rubin23 as an associated flow rule:

Dp � 	pD� p (10)

where the direction of Dp for plastically isotropic re-
sponse is specified by the deviatoric portion of the
driving stress tensor23 and 	p is a nonnegative func-
tion expressing the rate of plastic deformation and
needs to be specified.

For the case of uniaxial deformation, Rubin, solving
the previous equations, extracted the following ex-
pression for the time evolution of the normalized
stretch ratio (am) of volume element, which is sub-
jected to the large imposed deformation

ȧm

am
� � 1 


1 � 2�

2�1 
 �� �am
3 � 1
am

�
1 


1 � 2�

6�1 
 �� �5am
3 � 2
am

��
� � ȧ

a �
	p

18 �am
3 � 1
am

3 � �4am
3 
 2�� (11)

with the initial condition am(0) � 1 and the Poisson
ratio (�) is equal to 0.3.

The quantity 	p, expressing the rate of plastic defor-
mation, has been modeled in previous works,9,25

where it was assumed that during deformation, strain
is accumulated around specific regions inhomoge-
neously, following a normal distribution density. In-
tegrating this distribution, we obtained the rate of
plastic deformation as follows:

	p �
ȧ

a�am
y � 1�

1

s� �
1

a

e��1/2��ai��/s�2 dai (12)

where ȧ is the imposed deformation rate and am
y is the

stretch ratio where yield takes place. The limits of
integration are expressed in respect to the stretch ratio
a. � is the mean value of the probability density and is
taken to be the stretch ratio am

y where yield occurs. The
standard deviation s is a fitting parameter. When eqs.
(11) and (12) are combined, the viscoelastic stretch
ratio (am) and its time derivative (ȧm) can be evaluated
at every stage of deformation. These values of ȧm were
thereafter introduced into eq. (1), replacing the strain
rate (de/dt�) and leading to stress evaluation.

Figure 9 Tensile stress–stretch ratio curves at a crosshead
speed of 10 mm/min for samples (a) M1 and (b) M2: (E)
experimental data and (—) theoretical predictions.
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As shown in the experimental results of the stress–
strain curves, a strain hardening took place at high
values of deformation. To obtain the complete calcu-
lation of stress, including this stage, a supplementary
term (�h) for stress should be taken into account, due
to the entropic hardening,26 as an additive term to the
constitutive eq. (1). This additional stress is given by

�h � Gp

�N
3 �ap1L

�1� ap1

�N� �
1
3 	

j�1

3

apjL
�1� apj

�N�� (13)

where api is the stretch ratios in the three principal
directions with ap1 � 1 � a � am, and ap2 � ap3
� 1/(ap1)0.5; N is the equivalent number of rigid links
between entanglements (equal to 20); and Gp is the
strain hardening modulus (equal to 5 MPa). The Gp

value is obtained from the slope of the stress–strain
curve in the region of large deformations, where strain
hardening takes place. Because Gp expresses a shear
modulus, it is equal to the slope value divided by 3.
The value of N was estimated from the best fit of the
experimental stress–strain curves.

Integration in eqs. (1), (11), and (12) was made nu-
merically with small time steps until a high conver-
gence was obtained. Following this procedure, we
could describe the stress–strain response of the mate-
rials in detail. The theoretical results in respect to the
experimental data are shown in Figure 9 (at a value of
stretch ratio up to 2.2), where a good approximation
was testified for the entire shape of the experimental
curves. The experimental curves of Figure 9 were plot-
ted in terms of the true stress–strain data in respect to
the experimental results plotted in Figure 8. It is im-
portant to mention here once again that E(t) was eval-
uated from dynamic mechanical tests, and through
this analysis, it was possible to predict satisfactorily
the total stress–strain behavior in a quasistatic tensile
experiment.

CONCLUSIONS

In this work, we examined two types of metallocene
ethylene–a-olefin copolymers with some essential dif-
ferences in their micromorphology that affected their
macroscopic behavior.

The viscoelastic behavior of the materials was stud-
ied in a wide temperature range at four different
frequencies in terms of DMA, and the experimental
curves of E(t) were obtained. By this method, values of
E(t) at extremely low values of time were available.
Hereafter, this function satisfactorily predicted the
stress–strain response of the material in the initially
linear viscoelastic region in terms of a single integral
constitutive equation without the requirement for any
additional model parameters. For higher values of
deformation, where plastic strain was enhanced, a
plasticity theory of separating the plastic and vis-
coelastic part of strain was applied, for a complete
description of the stress–strain behavior.
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